JUMBO REVISITED, PART ONE: JUM

MICHAEL ROBERTS
michael@vivtek.com

JANUARY 18, 2026

Douglas Hofstadter’s program Jumbo was a model of the human cognitive mechanisms involved in solv-
ing anagram puzzles. It defined an approach that set the agenda for decades of research through a dozen
doctoral dissertations, and my current focus is to recapitulate (some of) that work in a single, unified
codebase. This report addresses the implementation decisions and lessons learned during my implemen-
tation of the first stage of Jumbo’s process model.

All the code from this project can be found at https://codeberg.org/Vivtek/AI-FARG-Jumbo for your
reading pleasure.

Contents

TIE SEOTY SO AT ettt ettt 1
Implementing Jumbo, O at LEASt JUITLcc.cvcuiieiciiircccircec ettt en 4
LESSONS LEATTIEA ...ttt ettt ettt ettt b et ettt etsas bbb e s et et eteanas bt et et et etereanas s s erenas 11
INOW WHAL? ..ottt ettt ettt ettt ettt as s b et e s et et etsasas b et es et et essasas s es et et etessasas et et esetessenasasesesesas 12
RETEIEIICES ..ottt ettt ettt e et ettt et et et etsesasasas s bt ebesebeb et et eteesssasas st esebesebebetessenenasanssesesesesetas 14

The story so far

The project reported on here is the first half of the functional-
ity of Jumbo[1], Douglas Hofstadter’s model of human cognition [1] Hofstadter, D. R. (1983) The Ar-
as applied to the process of solving anagram puzzles. I'll explain chitecture of Jumbo
later what “first half” means and why I've broken the develop-
ment into two parts, but first, let me note that this report is writ-
ten to a more technical level than the last one. Apologies if you
were looking forward to more in the same genre, but this is an
intermediate report and I don’t want to spend a lot of time on it.
That said, this section is intended to describe the basic approach
and the Jumble domain in very brief terms to get you oriented.
The architecture that Hofstadter described in his 1983 paper is
called the parallel terraced scan, and I've written about it at more

length in the first technical report in this series[2], which de- [2] Roberts, J. M. (2025) A Minimum
scribed the implementation of a pilot version of the architecture. V/abgeSP roduct for the Parallel Ter-
raced Scan

The parallel terraced scan is the core of Hofstadter’s research ap-

https://codeberg.org/Vivtek/AI-FARG-Jumbo

JUMBO REVISITED, PART ONE: JUM

proach, the basic architecture used in about a dozen doctoral dis-
sertations by Hofstadter’s own students in the Fluid Analogies
Research Group (FARG) and a handful of others elsewhere. It is a
technique for building (or perceiving) complex structure in input
data by progressing in very small steps executed in a random or-
der, but with a bias toward pathways that seem more promising.
When designed and balanced well, it cuts through the exponen-
tial complexity of searching every possible solution in a problem
space. Based on my many weeks of experience with it, in fact, I
can tell you that you don’t have to design or balance it particu-
larly well for this approach to feel like magic.

In the work covered in November’s report, I implemented a
parallel terraced scan engine and tested it in an extremely sim-
ple problem domain: the arrangement of a list of numbers into
a sorted order. I called this domain NaiveSort because the rules
used to build the list structure are simple and incomplete, in that
numbers taken from different sublists for comparison are only
merged into a single sort order in a few situations that are easy
to code, and in other situations the program takes no action. De-
spite being hobbled in this way, NaiveSort still manages to sort
lists of numbers robustly.

Hofstadter and his group call their application domains mi-
crodomains to distinguish them from the sort of larger-scale do-
mains typical of cognitive research at the time. A “domain” in this
sense in the 1980’s tended to mean a field of human endeavor,
something like “physics” or “vision.” Hofstadter’s approach was
to look at much smaller bits of thinking, such as a single type of
puzzle. My own work is more software-focused—instead of being
a cognitive scientist, 'm starting to think I'm more like a cogni-
tive artisan—so I'm comfortable with just calling these “domains”
instead of microdomains, saving me five letters every time I talk
about them.

The first such (micro-)domain was in fact Jumbo, which Hofs-
tadter worked out over the course of 1982 and described in his
1983 paper. Jumbo models the human cognitive mechanisms in-
volved in solving Jumble puzzles in the newspaper, which is a far
more restricted domain than physics but, Hofstadter insists (and
I agree), actually reveals the underlying mental processes more
clearly. I don’t want to spend a lot of time describing Jumble in
this report, since I plan a more complete presentation in Part Two

Page 2

JUMBO REVISITED, PART ONE: JUM

of Jumbo Revisited, but if you’ve never seen a newspaper Jumble,
it consists of several scrambled words which, when unscrambled
and written into the answer boxes, drop their letters into slots to
define a second puzzle. The unscrambled version of that second
level is the punchline to what is generally a groaner of a joke in
an accompanying cartoon. Some people live for this stuff.

When you do one of these puzzles, you might see something
like SIONE, and the expectation is that you’ll quickly perceive
this as a scrambled version of a common word. In my experience,
five-letter sequences jump out at me and six-letter sequences
take a little chewing before they yield. When you see SIONE, you
might think something like “EOSIN? NISOE? Oh, NOISE!” It’s
quick, well under a second. What’s happening there? Hofstadter
theorizes that there are subcognitive processes below the level of
our conscious awareness that see groups of letters that look good
together (like OI in NOISE), and then just kind of shuffle them
around a little before recognizing a word. But notice that before
we get to a word, we sometimes go through some intermediate
steps that look like words, but aren’t. In fact, even the sequences
originally presented in the puzzle are usually arranged to look
something like words, making it more difficult to see a different
order for the letters.

The architecture Hofstadter proposed to model this type of
process consists of a Workspace containing bits of data (which I
call units). These units can either be things like letters (or num-
bers, for NaiveSort) or containing units that represent bonds be-
tween letters, any kind of structure that combines the low-level
units into higher-level patterns.

This structure is built by the action of many bits code called
codelets that are placed on the Coderack, basically a list of possible
things to do next. Codelets can be either scouts, placed onto the
rack at any point to look around the Workspace and find some-
thing to work on, or follow-up, which follow up on some task
carried out earlier that needs more steps to reach a conclusion.

Most of the actual work involved in developing software to
this architecture is writing codelets that define and process your
target domain. The terraced scan engine itself is provided in a
library. Of course, in addition to the codelets that the engine
will call, you can include any other subroutines or libraries you
need (Jumbo has a simple database of likely-looking letter groups

Page 3

JUMBO REVISITED, PART ONE: JUM

called the Chunkabet, for instance). But the core of the develop-
ment is the domain object.

My goal in this line of research—a goal I first formulated in
1996—has been to build that central terraced-scan library, then
redevelop an assortment of domains featured in the FARG out-
put over three decades of doctoral work in order to distill out the
functionality and semantics they have in common. For obvious
reasons, it felt right to start with Jumbo to do that, the first of
them all.

So let’s look at the implementation of the Jumbo domain in
more detail, and why I only did half of it before feeling the need to
step back and do more work on the terraced scan infrastructure.

Implementing Jumbo, or at least Jum

The implementation of terraced-scan domains turns out to be
a complex endeavor. (I don’t know why that surprised me, but
somehow it did.) One of my goals in this recapitulation line of
research is to implement several of them in order to get more
intuition about how the parts of the architecture work together
and how each overall system reflects whatever part of human se-
mantics and cognition it models. In other words, I see these cod-
ing projects as a kind of learning how to learn; as I code more
of them, I hope and expect it to be easier and easier to tackle a
new one.

The Jumbo domain is probably about five times more complex
than NaiveSort. In NaiveSort, we have two types of units and four
codelets; in Jumbo we have four basic unit types and six auxiliary
ones, and thirteen codelets implemented even at my cutoff point
(1l get to that in a minute, don’t worry). In principle, this should-
n’t matter, but in practice, as always, it does. The interactions are
harder to understand and debug and that forced me to think of
better ways to impose some order on the chaos. Ultimately I de-
cided that I wanted to bring those techniques back into the core
library and start over, and that’s why we have a Part One.

The basic unit/codelet architecture of Jumbo is fairly close
to Hofstadter’s description in his 1983 article. We start with let-
ter units, one for each letter in our problem statement. Letter-
spark-scouts are released when there are unbound letters in the
Workspace (more on the bound/unbound distinction later), and

Page 4

JUMBO REVISITED, PART ONE: JUM

each scout chooses two (unbound) letters at random and decides
whether to make a spark unit between them. If it does, it also
posts a spark-checker codelet to check the letter pair for quality.
If it doesn’t, or it turns out there aren’t two unbound letters to be
selected, it fizzles. Fizzling means that the codelet just didn’t find
the right conditions by the time it ran, and it is deleted (well, it’s
put into the log) and nothing else is changed.

The spark-checker is more complex. When it is called (and re-
member that other spark-scouts might have been called in the
meantime, or later codelets in the process) it can’t be sure that the
current Workspace situation is the same as when the spark was
created, so the first thing it does is ask the spark for its “from” and
“to” units, and it extracts a framelet from the Workspace that de-
scribes the mutual neighborhood of these two units. The framelet
is just a little context record pertaining to some part of the cur-
rent state of affairs, but at this stage all you need to know is that
it can be seen as the answer to the question “Tell me about the
situation of these two units”. The extractor finds the units, checks
whether they’re already bonded together or separately, and re-
turns all that in a little context record for the codelet to use to
make decisions. I settled on this model relatively quickly in the
development of NaiveSort, and it’s still a good choice.

If the two letters turn out to be phonetically incompatible—
which the spark-checker determines by asking the Chunkabet—
the spark-checker fails. Unlike fizzling, failure means that some-
thing has to be done to the Workspace, and in this case we have
to delete the spark unit and increment the frustration of both of
the units we looked at. Frustration is part of global temperature;
at some point it might also be used to focus codelet attention on
problem spots. We'll see. So far, the only thing it does is raise the
temperature, and so far all that does is provide an indication that
things are bad enough to release breaker codelets.

If the two letters are compatible, though, then we might bond
them. That decision depends on whether they’re already involved
in bonds and if the resulting bond would be superior to the bonds
that would have to be broken up. If a single letter tries to bond to
one of the letters in an existing bond, then a three-letter bond can
result, if that three-letter sequence is phonetically valid. In other
words, if an m tries to bond to an existing oi, then it will fail. Each
bond group can only be a consonant cluster, a vowel cluster, or a

Page 5

The Chunkabet is a little database
of workable letter clusters, along with
some handy functions for comparing
them and adding up sequence quality
metrics.

JUMBO REVISITED, PART ONE: JUM

syllable-final cluster like se or ly. This knowledge, by the way, is
not reflected directly in the code; the Chunkabet simply doesn’t
include mixed clusters as valid.

If we ultimately decide that the letters can bond, then the
codelet fires, meaning it makes a change to the structure of the
Workspace. In this case, it promotes the type of the spark to bond
and sets the frustration of each letter to 0, lowering the temper-
ature of the Workspace. By the way, even though by convention
I'm telling you that fizzling makes no changes, failing makes lim-
ited changes, and firing is allowed to add structure, as far as the
codelet handler is concerned you can do anything you want. The
fizzle, fail, or fire messages are logged equivalently, and any of
the three can be given fff actions to be taken against the Work-
space. The distinction really applies to my own evolving sense of
best practices for codelet design. As one of possibly two people
on planet Earth writing codelets in the past few years, I think I
get to set these industry standards as I see fit.

Let’s step back just a little at this point. The ability to bond
letters into bond groups based on Chunkabet quality judgments
was as far as I got when I first started implementing Jumbo in
2024. That effort succumbed to technical debt and I went off doing
other things for a while before getting back into the game at the
end of 2024. And when I decided in August 2025 to develop the
parallel terraced scan separately before returning to the Jumbo
domain, I based NaiveSort on this stage of processing, eliminating
the need for a Chunkabet by changing the “quality decision” to a
simple greater-than check. So this part of Jumbo was essentially
already done by the time I turned my attention back to Jumbo in
November 2025.

The full Jumbo domain, though, not only builds higher levels of
structure (gloms, syllables, and a wordoid), it also includes shuf-
fling codelets that can move the letters between syllables in the
attempt to find a better top-level word. Hofstadter groups these
into entropy-reducing and entropy-preserving codelets; we reduce
entropy by grouping things successively, but by shuffling things
around we’re neither grouping nor ungrouping. (The third cat-
egory of entropy-increasing codelets are, of course, the breakers
we release when the problem gets “stuck”.)

It took me just a few days to port the NaiveSort style back
to the Jumbo domain, and then I buckled down on higher-level

Page 6

Honestly, not having this kind of
knowledge in the code is a semanti-
cally risky strategy and yet another in-
dication that the parallel terraced scan
itself is not a full cognitive model.

JUMBO REVISITED, PART ONE: JUM

structure. Once letters have coalesced into bond groups, they can
be firmed up into gloms. A glom is the same group of letters, but
it takes its component letters out of circulation for the bonding
process. Concretely, a glom-spark-scout looks at bond groups and
optionally creates a glom-spark. A letter-glom-spark also looks at
single letters and judges whether they can be considered a single-
letter “cluster” in their own right (for instance, the h and the e
in here are single-letter gloms). The glom-spark is then judged by
the follow-up glom-spark-checker and converted into a glom if
everything looks good. To do that, it promotes the spark to glom
type, deletes any bonds, and changes the letters to type bound-
letter to take them out of circulation.

“Wait,” I hear you asking, “All you did was propose a link be-
tween two letters, and then check it. What might not look good?”
Oh, my sweet summer child. Everything that follows describes
bugs that took me hours or days to comprehend, but remember
that codelets are posted and then execute in a random order. So by
the time the glom-spark-checker follow-up runs, if it’s looking
at a bond group then the bond might have been deleted because
another letter bonded one of its component letters. If the glom
spark is looking at a single letter, that letter might now be bonded
and no longer be a single letter. The bond group may already have
been glommed by another spark, meaning the bond is deleted and
the letters aren’t unbound letters any more. If you fail to check
for any of these conditions, very, very weird things will happen
in your Workspace and you will undergo a mind-expanding ex-
perience. Lucky you!

At any rate, once some letters are glommed, we start looking
at which gloms can fit together into a syllable. This turned out to
be more complicated than I expected. (Not the first time I've said
that, and won’t be the last, I assure you.) Syllable construction
is the first place where it becomes important to be able to get a
syllable quality measure from the Chunkabet, and gloms don’t all
fit together into syllables in any old way—some letter combina-
tions are only good at the start of a syllable, some only at the end,
and some (typically vowel clusters) in the middle. So you have to
check every combination for validity and return a combination
that works. You can just see the code for how I ended up solving
it, but that alone took me several days.

Page 7

This is called chunking and I intend to
give it a little more formal infrastruc-
ture this month.

JUMBO REVISITED, PART ONE: JUM

During syllable checking, we also have to regulate competition
between syllables for the good gloms. Here’s where the syllable
quality comes into play. If a syllable ends up trying to claim one
or more already-bound gloms, then we compare the quality of the
newly proposed syllable against its competitor or competitors. If
it’s superior, it gets the gloms. In a more mature implementation
of the domain, we would actually be looking at the global Work-
space temperature to determine how strictly we insist on an im-
provement in quality, but so far I haven’t needed to implement
that to get reasonable results.

Once syllables are represented in the Workspace, we start re-
leasing wordoid-scouts. All that does is look for a syllable and
push it into the top-level word, chunking it in the process. Once
all letters are bound into gloms, all gloms into syllables, and all
syllables into the top-level wordoid, we’re done.

In a full Jumbo implementation, this is where the shufflers
would kick in (not necessarily here—they could also start work-
ing at the syllable level, for instance—but this is where I'd start
implementing them). But it took me over a month to get to this
point, and in that time I’d come up with a new organizing prin-
ciple for Workspace changes that I call moves.

See, you can’t test codelets in isolation—or rather, you need
a known Workspace configuration to run a unit test of a given
codelet. During the implementation of NaiveSort, this was rela-
tively easy to do; I just defined a “move_and_step” that would
post a given codelet explicitly and then single-step the terraced
scan. Since there was only one codelet on the rack, and it had a
known set of parameters, we can usually know its outcome and
verify that it worked as expected. (Just a quick note from forty
years of programming experience—any complex code that you’re
not running through regression tests is broken even if you don’t
know it yet. So getting codelets into a regression testing frame-
work was vital for my sanity. Some people may have the mental
discipline to change code without breaking something else; I am
not one of those people.)

For the early stages of Jumbo, this approach still worked. By
the time I got to gloms that technique was getting tricky—some-
times I needed to change the types of some letters so the glom
codelets would only see the ones I wanted. But by the time
I started putting gloms together into syllables, I realized that I

Page 8

JUMBO REVISITED, PART ONE: JUM

needed to be able to build a known Workspace configuration from
scratch. Which—this is key—is really ugly to do with codelets
called explicitly. It occurred to me at some point that if I could
just call the parts of the codelets that made changes to the Work-
space independently, I could set things up any way I wanted.

A few weeks prior to this, I'd been musing that the state of
the Workspace looked kind of like the board state in a game, and
that changes to it could be seen as moves from one valid state
to another. The trajectory taken by the terraced scan starts look-
ing like search (which, of course, is exactly what it is). I realized
that the “parts of codelets that made changes” were in fact those
moves, so I converted most of the early-stage codelets to do all
their work with explicitly defined moves, named those moves in
the domain object, and made it possible for the terraced scan en-
gine to execute those moves by name—all so I could call them
from test setup scripts.

If you’re now thinking, “Hey, that sounds like you’ve incurred
some technical debt because I'll bet you didn’t really test any of
that, did you?” then you know me all too well. I started sweat-
ing at this point, but the moves organized the code so well that
I had already decided there was no way I was going to write the
shuffling codelets without them—or without the other new orga-
nizing principle I'd come up with. (December was a month full
of insight.)

Sometime in November or December I had finally found Hof-
stadter’s original 1983 article. Up to this point I'd been working
from the version that had been rewritten as Chapter 2 in his 1995
book. (I should note that sans institutional affliation, my access
to the literature is, well, let’s call it stochastic.) The original arti-
cle was substantially the same, but there was a remark in passing
that doesn’t seem to have made the 1995 cut, which was some-
thing to the effect that until a spark succeeds, no change is made to
the Workspace. Huh. My kneejerk strategy back in 2024 had been
to represent the spark as a unit; that’s why I came up with the
idea of promoting it to a bond if it succeeded. It had to be in the
Workspace in March 2024 because that’s the only data structure I
had to store any explicit data about the process, and also because
my original graphical output drew sparks in the Workspace rep-
resentation, so they clearly had to be in the Workspace, right?

Page 9

JUMBO REVISITED, PART ONE: JUM

But in the meantime, I'd started relying on framelets for tempo-
rary storage of contextual information. If a spark was not stored
as a unit but as a framelet, then only when the situation had
passed the checker would any unit be made in the Workspace.
It matched up with Hofstadter’s original notion—his reason for
mentioning it had very little bearing on what I was actually do-
ing, but the more I thought about this, the more I liked it. When
I originally thought of the notion of a framelet, I went tearing off
in all mental directions about what they might become; they’re
meant to be the atomic component of semantic structure, after all.
If T used framelets to keep track of each ongoing decision process,
then I wouldn’t necessarily have to delete any of it. In fact, I re-
alized, the “framelet cloud” of perception of the current problem
was really kind of the semantic description of its parts and how
we’d got there. In fact, I further realized, the “framelet cloud” was
the episode of episodic memory.

Episodic memory still seemed a far-off thing to be thinking
about, but it was clear that I needed to go back to the terraced-
scan engine and NaiveSort to do some proper testing before tack-
ling the shuffling codelets. I decided to cut the wordoid construc-
tion process off and call it “Jum”, and all I'd have to do to call it
a milestone would be to turn my unit-tested codelets into a full
test run configuration and shake any remaining bugs out, which
I envisioned as a simple, quick step.

Reader, it took three days of full-time agony to debug those
codelets and get them working. I despaired of ever comprehend-
ing what was going on. (In the end, what was going on was my
continued failure to check that units were still alive and that they
hadn’t changed type, just as I told you earlier. But it looked dif-
ferent at every level!) Finally, I wrote a done-checker to stop the
process when the wordoid contained all the letters in the Work-
space, and then, just as with NaiveSort, I saw that without a
breaker codelet it would just get stuck early on. So I wrote a sin-
gle breaker I called the devourer that found the highest-level unit
it could, and disbanded it, freeing its content units. Then I ran the
thing. A lot.

If I gave it a seed that permitted a wordoid that passed the
Chunkabet filter, it always found a wordoid. Eventually. Some-
times it found a good one in 40 codelets. But sometimes it blun-
dered around in syllable space finding the same bad combinations

Page 10

You're not supposed to define mile-
stones as you reach them, but | don't
have a project manager, so here we
are.

JUMBO REVISITED, PART ONE: JUM

over and over and over again before it finally staggered to a con-
clusion. I usually got bored and killed any long runners, but once
I let one run for over 30,000 codelets before it finally managed
to end. My data structures were not designed to handle the thou-
sands of dead units this created, so it got slower and slower as
it went. I'd been considering putting this up on a webserver for
public edification, but a process that takes 30 seconds to finish?
That’s going to get really old, and as it happens at least one time
in five on any input, I can’t do that.

Then the scales fell from my eyes—the framelet cloud is an
episodic memory! The framelets that have just built the syllable
HEET three hundred times in a row, if we first look through a hy-
pothetical framelet index, could turn out to be the same framelet
recognized as already having been tried. If we hit high temper-
atures repeatedly after forming HEET, then we can just not do
that again. Obviously, that’s not a binary choice—like anything
in FARGland, it would be a gentle and growing pressure.

I had just reinvented the self-watching wheel, and the student
was enlightened. No wonder Hofstadter was so focused on self-
watching in 1983/1984. As it turned out, Copycat’s focus mecha-
nisms in the following years introduced enough randomness into
the search that it didn’t get stuck in snags as often as I was seeing
in my implementation of Jumbo, but perhaps Hofstadter’s imple-
mentation had blundered through the same short syllables five
hundred times in a row before finally making better life choices.
And on the hardware available in 1982, that didn’t run in 30 sec-
onds, either.

At any rate, I had reached my hastily-defined milestone, Jum
went up to the Codeberg repository, and I sat down to write this
report.

Lessons learned

I like a lessons-learned section, but given the arbitrary nature of
this milestone it seems like a blurry snapshot, even aside from the
fact that the last few paragraphs of the last section already sound
like lessons learned. But let’s try on a couple for size anyway.

I need better instrumentation for debugging. My usual
method of placing printfs into the code helps, but it takes a long
time for the meat to start to distill out a picture of what’s going

Page 11

JUMBO REVISITED, PART ONE: JUM

on, especially given that an error that only crops up after a par-
ticular sequence of codelets is a pain to reproduce (and you never
do reproduce it entirely; instead, you have to learn to perceive a
whole class of error behavior). It would be nice if I could inspect
more detail of what happened in a given problematic run, and
it would also be nice to have a test run facility that would run
instances successively until a given run met certain criteria.

I need to work on efficiency. Longer runs might very well
be important in many domains, but even Jum'’s looooong runs
brought the Workspace table module to its knees. I suspect that’s
because my selection method for two gloms, for instance, scans
the entire list of gloms to do that, which includes all the dead
ones that the devourer has broken up. And that’s a lot. A stopgap
would be just to keep a short list of units that are still alive for
selection calls, but ultimately I need to rebuild the entire engine
in C or Rust, not in Perl, with proper heap management. It’s said
that all truly complex software ends up reimplementing half of
Common Lisp, but badly—but I think I can do better than “badly.”

Moves are a good move. Actually, anything that reduces the
effort to write a codelet is a good move. I want to pull the move
mechanism into the Workspace object entirely, logging the move
trajectory separately from the Coderack log. Moves should also
make it easier to provide event subscribers with information rel-
evant to displays.

Self-watching is key. In my last report, I thought self-watch-
ing was key to the larger cognitive model because that’s the level
at which the model can build semantic models of what’s going on.
Now I realize that self-watching is vital even at the Workspace
level.

Now what?

So where do we go from here? First and foremost, I go back to
NaiveSort and the core terraced scan engine to implement and
test what I've been thinking of as the two new codelet styles. The
“move style” is based on my strict distinctions between fizzle, fail,
and fire, and puts all Workspace changes into named moves. I do
think it’s important to allow codelet writers to design codelets in
any way they see fit, so it won’t be an error to work outside of the

Page 12

JUMBO REVISITED, PART ONE: JUM

move system, it’ll just be easier to stick with it—for me, anyway,
and of course to date that’s literally all that counts.

The “framelets-and-move style,” then, makes no changes to
the Workspace unless they’re true perceived structure built by
codelets working from framelet-based notes. I think I'd like to
take this opportunity to think about the best way to index
framelets during the run, perhaps even implement this form of
self-watching to allow us to avoid earlier partial solutions that
turned out unfortunately.

After that, I'll come back and finish off the shufflers to finish
off the full Jumbo Revisited. If I've done this self-watching, I'll
probably test it with Jum before moving on to shufflers, of course.

But after that? I'm glad you asked!

Numbo. After Jumbo comes Numbo, obviously, even though
my wife has helpfully informed me that this would be leaving out
the intermediate projects of Kumbo, Lumbo, and Mumbo. From
an architectural standpoint, Numbo differs from Jumbo in a cou-
ple of ways, primarily due to the fact that it has a conceptual net-
work. But it also maintains a small focus within the larger Work-
space, and lately I’ve started to realize that the focus probably
maps onto human working memory while the Workspace, which
I had always thought was working memory, is probably best seen
as episodic memory. This is unsettling, so I look forward to being
able to settle it.

I also see Numbo as a warmup for Copycat, a far more involved
domain. I want as much relevant experience as I can get before I
tackle it.

Semantics and language. In November, I started reading
Michael Dyer’s early work, and after some thought I realized that
his DYPAR parser is essentially a codelet system. Once I started
down that conceptual path, Irealized that my “research tier stack”
was diverging from my earlier plan. In November, I wrote that I
saw Tier 1 as the classical terraced scan, while Tier 2 would ad-
dress self-watching, long-term memory with progressive recall,
the use of framelets, and so on, because all of those felt more
or less semantic in nature. But now I've just told you that self-
watching and framelet use will be coming into Tier 1, so what’s
Tier 2? I think it’s the way language allows us to work with se-
mantics.

Page 13

JUMBO REVISITED, PART ONE: JUM

My first project on Tier 2, then, will probably be called NeoDY-
PAR and will attempt to use the terraced scan to process text on
more or less the general plan of Dyer’s work. I'm basically go-
ing straight to all the approaches from the 1980’s and trying to
make them work on 2026 hardware. I feel like a time traveler, to
be honest.

And that’s the state of the FARG recap at the start of 2026. Let’s
see how far I get this year!

References

[1] D. R. Hofstadter, “The architecture of Jumbo,” in Proceedings of the International Machine Learning
Workshop, June 22-24, 1983, Allerton House, Monticello, Illinois, 1983.

[2] J. M. Roberts, “A Minimum Viable Product for the Parallel Terraced Scan,” 2025.

Page 14

	The story so far
	Implementing Jumbo, or at least Jum
	Lessons learned
	Now what?
	References

