
A MINIMUM VIABLE PRODUCT FOR THE
PARALLEL TERRACED SCAN
MICHAEL ROBERTS
michael@vivtek.com

NOVEMBER 04, 2025

Douglas Hofstadter’s research group produced a dozen projects over a period of four decades exploring
the mechanisms of human thought; my intent is to extract the core functionality they all share into a
reusable methodology. This first project in that effort examines the parallel terraced scan, the architecture
that allows processes to build abstract structure as the emergent result of many small and manageable
agents. Existing projects present this architecture in the context of an involved doctoral work, so for
greater clarity and to simplify testing in isolation, I’ve defined a much smaller problem domain as a test
case. This report sets the background for this effort, talks about the architecture and the test domain used
to implement it, and expounds on a few lessons learned during implementation.

All the code from this project is at https://codeberg.org/Vivtek/AI-TerracedScan; once I’ve put it
through the wringer with a more detailed application, it’ll hit CPAN as AI::TerracedScan.

Contents

What I think I’m doing here ... 1
Brief history of the parallel terraced scan ... 4
Implementing a first domain .. 7
A minimum viable product: NaiveSort .. 11
Features I consider minimal ... 15
Features you might not consider minimal .. 17
Lessons learned ... 19
Now what? ... 22
References ... 25

What I think I’m doing here

This document is essentially a chatty technical report, the de-
scription of progress made in this first stage of what would have
been my doctoral work had my life run on a different track.
I think it’s reasonable, then, to describe what that work would
have been and how I now see it, and give you a sense of why
it’s still relevant. It is vaguely aimed FARG = Fluid Analogies Research

Group
at both friends and family

(“You’ve been doing what now?”) and at FARGonauts and other

https://codeberg.org/Vivtek/AI-TerracedScan

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

interested technical/academic people, and I hope it suits all those
audiences. Feel free to let me know where it doesn’t, and I will
try to recalibrate for the next publication.

As is true for so many people who have worked with Doug
Hofstadter, my first exposure to his work was GEB:EGB[1] [1] Hofstadter, D. R. (1979) Gödel,

Escher, Bach: An Eternal Golden
Braid

. I
bought the book and devoured it when I was in tenth grade, and
when it came time to do graduate work, there was really only one
place I wanted to do it. By that time, I had already worked profes-
sionally for several years in software development, and so when
I had the opportunity to immerse myself in the FARG software
experience, I saw the existence of several independent codebases
as an opportunity to do software maintenance—to work towards
reusability of a central core of functionality that would make fu-
ture projects easier to manage. The year was 1994.

But we started our family at the same time we both started
graduate school, and we ran out of money about fifteen minutes
in. I went back to consulting work in Indianapolis, we bought a
house, I finished my Masters, and I ultimately went into database-
backed web development instead of going forward with doctoral
work. Then the second kid came, we bought a bigger house, we
ran into health problems, and there ensued my period of wander-
ing in the wilderness.

I made one brief attempt to resume FARG-related work in 2006.
The number of completed FARG projects had risen from three to
more like ten, and there hadn’t been much reuse. I talked about
that with some of the people active in the group at the time, and
everybody agreed it was a good idea. I did some solid thinking
about what such a reusable core might provide to projects, but
fate did not smile on my endeavor, and my wilderness years con-
tinued.

Recently, it dawned on me that as both children are now gain-
fully employed and we have no mortgage payments, I no longer
have any real excuse not to pick up where I left off. I started
rereading dissertations, and taking stock about how I’d start do-
ing something real. And astonishingly, I realized that every scrap
of coding I’d done in support of this or that idea turned out to
have been motivated by this very research idea. So what choice
did I really have? It had to be done. This report represents the
completion of the first step on that journey.

Page 2

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

The overall project is simple in outline. There are, as I count
them, about a dozen “official” FARG projects. Each of these pro-
jects essentially has a dual nature: first, it delineates some activ-
ity, like perceiving the structure of a sequence of numbers to pre-
dict the next few in the list, or seeing analogies between different
geometrical configurations in order to define how one group of
figures is different from another group. The FARG tradition calls
this kind of activity a microdomain. The project then breaks that
activity up into very small actions (codelets, because they’re very
small subroutines) that bring the system towards its overall goal,
and sets up a system of applying those actions incrementally. I’ll
describe this approach in more detail in the next section, in the
context of the earliest of these programs, Jumbo—but it’s impor-
tant to understand that what I’ve done in this first small project
is to implement that architecture, which can then be applied to
any microdomain.

But the purpose of FARG research isn’t to develop software
techniques—it’s to explore cognitive science. So the bulk of the
effort in any given FARG project is rightly devoted to the mi-
crodomain itself and what it can say about human cognition; the
code that implements the process is necessarily high-quality be-
cause it has to work reliably to support the research, but like a
lot of academic code, it’s one-off. It’s not built for maintenance
or reuse, and it’s generally very complex. The exception to this
rule within the FARG group is Abhijit Mahabal’s PySeqsee, PySeqsee is at https://github.com/

amahabal/PySeqSee for your viewing
pleasure.

the
first FARG attempt at a common platform. There have also been a
few projects outside the group that have reimplemented the ba-
sic FARG architecture with some view to reuse; Scott Bolland’s
FAE[2] [2] Bolland, S. W. (2004) FAE: The

Fluid Analogies Engine: A Dynamic,
Hybrid Model of Perception and Men-
tal Deliberation

 is probably the most comprehensive. I’ll be taking these
works into consideration as I move forward.

Part of what I wanted to do in the 90′s—preparing the way
for my real work of reconceptualizing the core FARG function-
ality on a more semantically sound basis—was to reimplement a
couple of these existing microdomains in a “main sequence” of
sorts (the sequence was a lot shorter in 1996), and come up with
something I now envision not as a reusable “library” of FARG ian
code in any particular programming language, but really more
as a methodology for taking the conceptual structure of a given
domain and designing a codelet ecosystem that expresses it. Ul-
timately, this effort should end up sketching out a semantic basis

Page 3

https://github.com/amahabal/PySeqSee
https://github.com/amahabal/PySeqSee

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

for codelet design, and in later research I hope to use that seman-
tic design directly using a low-level infrastructure of standard-
ized codelets, so that writing your own codelets will ideally not
even be necessary. (Although I can imagine that writing specific
codelets is a sort of “compiler step” that could increase perfor-
mance on well-understood tasks.)

When I first started planning this run at the goal, I reasoned
that ontogeny should recapitulate phylogeny, so I decided to start
my FARG odyssey My FARGyssey, if you will.with Jumbo, largely due simply to the fact that
as the first of the FARG projects, Jumbo has the simplest archi-
tecture. It’s the only example of a microdomain implementation
with no conceptual memory, and I wanted to make things as
simple as possible for myself as I got things off the ground. As
it turned out, even Jumbo wasn’t simple enough. Once I started
actually coding it up, I got lost in detail, and after a couple of
months I lost momentum.

Not that the diagrams weren’t fun!
(And animated.)

This was due to two things I should have been prepared for:
I spent too much time generating nice Workspace diagrams and
accrued technical debt doing so, and I didn’t have a good unit
testing regimen in place because I was testing the scan engine
and Jumbo at the same time, but without testing either very well.
I realized that I simply needed to start over from scratch without
graphics and with sane testing—and, in the end, without Jumbo.
I needed to design and build a minimum viable product before I
could really move on to more serious domains, and that’s what
this report is about.

Let me fill in a bit more detail about the history and architec-
ture of the parallel terraced scan, and then I’ll describe my MVP
strategy.

Brief history of the parallel terraced scan

The concepts which led to the parallel terraced scan, as so much
of Hofstadter’s work, were amply prefigured in GEB:EGB in 1979,
but the first publication that named it was his 1983 article on
Jumbo[3] [3] Hofstadter, D. R. (1983) The Ar-

chitecture of Jumbo
. The core mechanism is so simple that it’s survived es-

sentially unchanged to the present day. It’s the software equiva-
lent of the stably expressed genes that code for cellular metabo-
lism; too much mutation and the organism just can’t function.

Page 4

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

It’s not by chance that I refer to it in biological terms, either.
Hofstadter took his inspiration from the action of enzymes in
the cytoplasm of the cell, and conceived an architecture that har-
nesses the actions of many small agents to achieve a high-level
goal holistically—the result we want is the emergent work of
agents that have no particular knowledge of how they fit into the
system, or even that there’s a high-level goal to achieve.

The amino acids of this process are individual units of data in
what is now almost always called the Workspace (it was called
the Cytoplasm in Jumbo), and the agents are (ideally short) bits
of code we call codelets. Codelets are “queued” on a list called the
Coderack—the scare quotes are because the Coderack isn’t really
a queue; codelets are taken from it at random, which is one point
where nondeterminism is allowed into the system.

Each codelet takes a look at the current state of the Workspace,
decides whether its action is still relevant, and if so, makes some
decisions and takes action in the form of changing the Workspace
contents and then optionally posting some follow-up codelets. In
most implementations of this architecture, individual decisions
that are taken (including the selection of codelets from the rack)
are “more random” if the temperature of the Workspace is high,
and more deterministic if the temperature is low. The tempera-
ture is a metric that estimates the quality of the partial solution
currently built, so when the scan “feels good” about what it’s do-
ing, it tends to follow its current line of thought more closely,
and if it “feels bad” then it’s more likely to explore alternatives.
If the temperature gets high enough, one option is just to scrub
everything (or parts of everything) and start over.

I’m being deliberately vague, by the way, about what it means
to “feel good” or “feel bad”. The calculation of this quality metric
is very domain-dependent. In my test domain NaiveSort, I lower
temperature when two numbers are bonded in a sort order, and
I raise temperature whenever a number tries to sort itself into a
list and fails. In this case, temperature turns out to be a dynamic
metric, less an indicator of quality than an indicator of current
progress and whether things might be going off the rails. At any
rate, I don’t really understand much about temperature calcula-
tion in general yet—that’s the point of this entire undertaking, to
evolve some best practices.

Page 5

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

There’s a lot of subtlety to this architecture. It’s easy to see ter-
raced scans everywhere, from the way humans explore research
topics to the way ants move a piece of dog kibble towards the
door. It’s nearly impossible to see a scan in action and not think,
“Hey, this Hofstadter guy was really onto something! Why don’t
we see this architecture used everywhere?” That’s a matter for a
different—and much longer—publication, less a technical report
than a manifesto, perhaps even a screed.

I think in the end, though, it boils down to one reason—
it’s just too dang hard. I’ll delve into this in more detail in my
lessons-learned section, but—while the parallel terraced scan is
actually surprisingly forgiving, getting reasonable results even
from sloppy rulesets—thinking like a codelet ecosystem designer
is hard, and involves both a certain species of weirdness in the
programmer and a willingness to accept that the pieces of your
program are lower-level than your words for talking about the
problem space.

It has been used in some truly impressive work, though! In
addition to the dozen post-Jumbo FARG projects, I initially shoehorned a timeline

into this section, but it’s too
much detail. There’s a fairly com-
plete timeline of the FARG projects
at https://github.com/Alex-Linhares/
FARGonautica/ along with a decent
bibliography, and eventually I’ll put
together one that explains the non-
FARG projects as well.

which worked
with microdomains ranging from analogies to games to musical
perception, I know of another handful of extra-FARG projects ap-
plying the same architecture to robotics and various aspects of
language parsing and generation.

I sort these into two basic architectural categories. The simplest
tend to show up earlier in the timeline and consist of the appli-
cation of the parallel terraced scan to a single perceptual activ-
ity; these were the projects for which I originally started seeing
a need for a common approach and I think of them as “TS clas-
sic” systems: Jumbo, Numbo, Copycat, the Letter Spirit Examiner,
Gan’s Chinese parser, Tabletop, and CMattie/IDA.

In the second decade of the FARG timeline, we start to see
systems that need more complexity than a single Workspace in-
stance, and add additional memory and workflow structure to
provide context for individual Workspace runs: Metacat, Letter
Spirit Part Two, Phaeaco. Then, in the new millennium, we see
what I think of as the “second generation” of systems, which build
on this mature body of theory: Seqsee, Linguoplotter, and a few
others like Musicat and George that I haven’t yet read enough
about to categorize.

Page 6

https://github.com/Alex-Linhares/FARGonautica/
https://github.com/Alex-Linhares/FARGonautica/

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

The TS-classic systems are where I’m starting, and they almost
universally add one central architectural feature to the basic par-
allel terraced scan: some kind of conceptual network, most com-
monly called a Slipnet from its name in Copycat. This turned out
to be such an advance over the simple Jumbo terraced-scan-only
architecture that something like it features in every later project.
Later phases of this research effort will examine it in more detail.

A unified FARG theory, then, has a lot of ground to cover! My
goal for this research effort in general is basically to develop a
reasonably complete catalog of architectural features and codelet
design techniques that could then be used to develop any of these
projects from a single starting point, then—unreasonable as this
may seem—to redevelop a representative sample to ensure that
the approach works. Given their widely varied nature, I some-
times fear that the representative sample will turn out to be all
of them. But ultimately, I’ve been convinced for thirty years that
lining a bunch of these projects up and comparing them will re-
veal commonalities that can then be mined for a kind of unified
semantics of thought.

Implementing a first domain

Until I’ve implemented something, I don’t actually understand it.
I’ve read a lot about the FARG projects—and since I found myself
restarting my shadow doctorate, I’ve read a lot more. But faith
without works is dead. Any theoretical listing of features might
be of historical interest, but the only way to understand why a
given domain might require this feature or that feature would be
to implement it. Logically, the place to start would be the simplest
possible domain that used the fewest architectural features.

At this stage, by the way, I only want to implement the scan
engine itself. Especially the later projects like Letter Spirit, Meta-
cat, and Seqsee are organized on the basis of an overall architec-
ture that uses a workspace instance to solve a specific task and
then embeds that instance into a larger process. Letter Spirit ac-
tually has three different terraced-scan contexts, each operating
on a specific part of a common scratchpad memory and coordi-
nated by a higher-level deliberative process. Seqsee can spin off
Subspaces to deal with local tasks in the context of the larger
ongoing process. And Metacat is explicitly concerned with self-

Page 7

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

watching and tracing of individual instances that are components
of a higher-level process.

This initial project can safely ignore all of that, implementing
only a terraced scan instance for a particular task run and re-
maining agnostic about the bigger picture, although we will want
features that make it easy to manage the instance and get infor-
mation in and out of it.

Unsurprisingly, we will therefore be looking at the “TS classic”
generation—Jumbo, Numbo, Seek-Whence, Copycat, and Table-
top. Of those, only Jumbo gets by without any conceptual net-
work. So when I decided to take my first steps into FARG imple-
mentation, I decided Jumbo would be my first domain.

I don’t want to go into too much detail in this report, but the
original microdomain in which the parallel terraced scan was de-
veloped was Jumbo, and it remains the best way to present how
the whole thing works. Jumbo’s purpose is to model (some of)
what goes on in your mind when you solve a newspaper Jumble
puzzle. The Jumble is usually on the comics page, My grandmother would save “the

funny pages” (that’s Appalachian for
“comics”) and give me a stack when I
visited. The Jumble puzzle looks like
this:

the only part
of newspapers I’ve traditionally paid attention to, and so I was
familiar with it long before I knew Hofstadter had modeled the
cognitive processes used to solve it. Before, in fact, he had done
that modeling, starting in 1982.

If you’ve never noticed the Jumble, I’ve put a random example
over in the margin. The point is to unscramble each of the non-
words into words, then take all the circled letters and unscramble
them into the punchline of the little comic. The humor in these
comics will never challenge you, but the puzzle may. If you spend
even a short amount of time with these, you’ll probably notice
that there are two levels of solving them—for short words like
the first in the margin example, you’ll often just flash on the so-
lution. (It’s NOISE if, like me, you want to cut to the chase.) But
for longer strings, you might find yourself “manually” trying out
different parts to see if they make sense.

This part is important to understanding what the Hofstadter-
ian project is all about: a lot of what we model is what your brain
does that you perceive as an instant flash of insight. You can
push letters around in your head to stimulate (or simulate) the
process, but spend five minutes with word scrambles and you’ll
know what I mean—you don’t see what the word could possibly

Page 8

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

be, you doubt the very existence of words, and then suddenly, a
word is just there.

Something that deserves note here, by the way—and this is
something that Jumbo doesn’t address at all; I’m just leaving it
here as a tantalizing taste of what’s to come in this larger research
track—is that when a human looks at these scrambles and doesn’t
immediately see a solution, that’s not the end of the story. After
I found this example Jumble and wrote the above paragraphs, I
went to peel some potatoes for lunch. As I was standing there,
I flashed on the next two words: LURID and DELAYED. How
does that happen? I have some ideas, but they won’t get imple-
mented this year, that’s for sure. (Note that DELAYED doesn’t
actually work—my memory had warped the letters. You’d think
that would be a flaw in how the mind works, wouldn’t you? You’d
be wrong, although nothing I report here and now will back that
confident statement up.)

Once you have a word in mind, whether immediately or while
cooking lunch, you can play around with it, read it backwards,
swap letters, and find other words that might also fit into the
same slot; this is part of the larger puzzle and is more deliberative,
more conscious. But all that only starts once you’ve perceived a
word in the first place.

Jumbo models both ends of this in what is really a two-phase
process. It starts with a pile of letters in its working area. Little
bits of logic called codelets then examine letters at random (we
call this “sparking”) and decide whether they fit together, on the
basis of a list of good letter combinations called the chunkabet. If
they do, they’re “bonded” in groups of two or three. Once there
are little bonded groups of letters floating around, more codelets
look at those groups and decide whether to commit to them and
take their letters out of play, a process called “glomming” them. I
think of gloms as being little tiles with groups of letters on them,
like str or oi, and once we have some glom tiles to play with, we
start collecting them into syllables and chaining the syllables into
a line. Once a group of letters has been chunked into a glom, the
system no longer looks at the individual letters as possible addi-
tions to other groups.

None of the codelets advancing this process has any kind of
overall checklist or plan, and in fact they’re posted to the Coder-
ack continually and drawn randomly one at a time to run. Each

Page 9

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

can look at a randomly selected unit of a particular type, or at a
specific unit it was bound to when it was posted. It’s all a seething
soup of activity.

After this seething soup has glommed all the letters available
(sometimes in groups of one, like the N in NOISE), we have
something not guaranteed to be a word, but that kind of looks
pronounceable by an English speaker. Hofstadter calls this a
“pseudo-word”; I call it a wordoid. (“Wordoid” itself being some-
thing of a wordoid.) The second phase of the process starts now,
and more codelets examine the wordoid’s component gloms to
see if they can shuffle into a better wordoid, where “better” means
“higher chunkabet score"—meaning more pronounceable.

There is actually a third phase in the process—because some-
times, the first two parts get stuck. A letter might turn out to be
incompatible with existing gloms, for example, yet can’t stand on
its own. The FARG tradition calls this kind of situation a snag.
One strategy to deal with snags is to invoke yet another cate-
gory of codelets, the breakers. A breaker looks for dubious bits
of structure that aren’t helping us, and smashes it. Not every run
needs to resort to this kind of desperate measure, but when you
need it, you really need it.

It is absolutely vital to realize that nowhere in any of this is
any list of valid English words. Most people find this shocking
and dismaying, but actually knowing words is a whole different
process that isn’t the one we’re modeling here. Anybody with a
week’s experience programming can shuffle letters and compare
the resulting string to a word list—that can be a useful tool, and
it’s how we’d approach something you’d want in production, like
scanning for spam or doing database lookups, but it’s not what
we’re about here. We want to capture the regularity of the English
language in such a way that you can imagine the system seeing
something wordlike that nobody had seen before. To be creative,
in other words, although it’s clear that this is a very low level of
creativity.

When I set out, I implemented letters and sparks and bonds
and codelets and realized I needed some better intuition of what
was going on in there, so I wrote a neat little display that ani-
mated the sparks shooting between letters and how bonds pulled
them together. In retrospect, I had bitten off too much to chew;
when I started work on the glomming stage, I found myself think-

Page 10

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

ing about how to animate the bond-group-into-glom transition
more than I was thinking about, you know, actually building the
codelets that would do the work.

One way to get past this kind of snag is to break up some of
your structure and start again. I resolved to do just that—but with
a smaller domain. I needed a minimum viable product for my first
implementation of the parallel terraced scan.

A minimum viable product: NaiveSort

But what could be even simpler than word scrambles? Since I
already had bond chains (the two-or-three-letter groups) work-
ing pretty well, I thought maybe to test with a “miniJumbo” that
would just build the bond chains, with some vague idea that I
would have a minimalistic chunkabet to avoid putting that in the
standard distribution. Then, when I actually sat down to code it, it
occurred to me that I could save myself a lot of trouble by coming
up with a domain that didn’t need a list of good combinations
at all. Instead of arbitrary sequences of letters being judged for
quality, why not just sort numbers?

This is my “nanodomain"—so called because it’s not even big
enough to be called a microdomain. It makes no pretense of ex-
ploring the mechanisms of human thought; it just applies some
simple rules to sort numbers into lists. I called it “NaiveSort” be-
cause it’s not even particularly great at sorting. Not to say that it
sorts incorrectly, but it doesn’t bother to do it efficiently.

The entire model If it’s easier for you to just read the
code, the NaiveSort domain is de-
fined at https://codeberg.org/Vivtek/
AI-TerracedScan/src/branch/main/lib/
AI/TerracedScan/Domain/NaiveSort.
pm as part of the overall AI::Terraced-
Scan module.

consists of four codelets: number-spark,
spark-checker, done-checker, and bond-breaker. The spark-checker
codelet is posted whenever the last spark-checker has executed,
so there’s always a chance of sparking. It selects two numbers
from the Workspace at random, and if they’re not already spark-
ing and not already bonded, it creates a spark unit linking them
and posts a bond-checker follow-up codelet.

The done-checker is similarly simple. It gets posted only after
there is at least one bond in the Workspace, with 20% probability,
meaning The Workspace can find the neigh-

borhood of any unit by following links
of whatever types are appropriate.
This is a neighborhood, and it’s the
kind of context that makes codelet de-
sign so much easier to comprehend.

it will be posted on average every five ticks. It selects
a number at random, asks for its bond neighborhood, and if that
neighborhood is the same size as the Workspace (meaning that
the group this number belongs to is in fact all of the numbers,
meaning the whole Workspace has now been sorted), it posts the

Page 11

https://codeberg.org/Vivtek/AI-TerracedScan/src/branch/main/lib/AI/TerracedScan/Domain/NaiveSort.pm
https://codeberg.org/Vivtek/AI-TerracedScan/src/branch/main/lib/AI/TerracedScan/Domain/NaiveSort.pm
https://codeberg.org/Vivtek/AI-TerracedScan/src/branch/main/lib/AI/TerracedScan/Domain/NaiveSort.pm
https://codeberg.org/Vivtek/AI-TerracedScan/src/branch/main/lib/AI/TerracedScan/Domain/NaiveSort.pm

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

response. Once a response has been posted, the scan halts with
that result.

At first, I didn’t write a bond-breaker at all; I hadn’t quite
convinced myself it would be necessary. I’ll talk about that in a
minute, but first let’s look at the codelet that actually does things,
i.e. actually bonds numbers into sorted pairs, then lists, then
eventually one list with all the numbers in the Workspace.

The spark-checker Feel free to skip this paragraph and
the next if you find them boring.
They’re just implementation details.

is considerably longer than the other
codelets. Starting from a spark unit, it gets a bond chain summary
from the Workspace for its two contained numbers. The bond
chain summary consists of the bond neighborhood for each of
the units, along with some initial tests: it checks whether their
bond neighborhoods are the same and sets a “bonded” flag if so,
and it also sets a flag for each of the two units: “u” if the unit is
unbound, “s” if the unit is bound to only one other number (and is
therefore at the end of a bond chain), and “d” if the unit is bound
to two other numbers (and is thus in the middle of a chain).

Based on that, the spark-checker can categorize the potential
bond as uu, su, du, ss, sd, or dd based on the situations of each of
its two units. The rest of the codelet handles each of these cases
individually: uu is always bonded and dd always fails. su succeeds
if the unbound unit would extend the appropriate end of the bond
chain of the singly-bound unit. du succeeds if the unbound unit
fits between the doubly-bound unit and its neighbor on either
side. ss succeeds if the two bond chains can be merged; it there-
fore fails if the two singly-bound units are both at the top or bot-
tom of a chain or if the chains would overlap. In the sd case, if the
singly-bound unit fits between the doubly-bound unit and one of
its neighbors, then the singly-bound unit leaves its existing bond
chain and merges into the other chain.

I chose But stop skipping here—this is impor-
tant!

these rules because they’re manifestly crazy. If you
were really sorting numbers and you had two sublists to merge,
say 1-2-4 and 3-5-6, you’d instantly notice that they’re almost
sorted together, and you’d say, oh, 1-2-3-4-5-6, done! NaiveSort
just says, “These sublists overlap and so I don’t know what to
do,” and bond-checker simply fails. I wanted rules that were quick
and easy to write without thinking of a lot of special cases, and
frankly I wanted rules that would just sometimes fail to work,
to see what would happen. I figured there would surely be some

Page 12

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

cases where these rules would “get stuck” and be unable to figure
out a way forward.

This is where Doug Hofstadter and I differ. He would spend a
minute thinking up specific lists and would already have worked
out a dozen cases where these rules would lead to breakdowns,
then he’d write the software and see that it did exactly what he
expected. I am not like that. I went out and mowed the road and
poured some leveling concrete on the back terrace, then I wrote
the software and it did things I didn’t expect, not in detail. I had in
the meantime already seen that a two-number bond chain would
sometimes be unable to break itself by the rules I’d given it, and
so my test case had seven numbers, to ensure that the Workspace
would never consist only of two-number bond chains.

You may already thought of one case where my stated rules
would lead to a snag, even though I hadn’t. My test list was 1, 3,
4, 6, 7, 10, 11. About the third time I ran a free run with that list, it
didn’t return. Ever the optimist, I hadn’t written any abort code
that would handle the situation if the scan got stuck. Once I did
that, I quickly found that the system had identified a Workspace
configuration that it could never break out of: 1-11, 3-4-6-7-10.
Neither of the numbers in the two-number chain could ever fit
within one of the bonds of the longer chain, and that’s the only
way the two-number chain could ever be merged into the other
chain. The long chain couldn’t merge into the two-number one
because a two-number chain has no doubly-bound unit to merge
with (the only merge case I’d given it).

Fairly quickly, the system provided more instances of configu-
rations that could never resolve, including one with an unbound
unit! (This surprised me because I thought the rules for unbound
units would always make sure it was bound.) A couple of exam-
ples are 1-10, 3-11, 4-6-7 and 1-7, 3-11, 4-10, 6. It was an absolute
delight to see my code discover them.

But it brought home to me the fact that sometimes, instead
of building structure, we really do have to break existing struc-
ture down if it’s causing problems. A number list sorter that just
throws up its hands and aborts isn’t very much like people—or
rather, it’s like a person who hasn’t learned how to sort lists and
doesn’t think it’s worth their time to figure it out. Part of figuring
things out is to try to look at things in a different way, and one

Page 13

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

way Another way to figure things out is to
learn new codelets, but that’s not hap-
pening this year.

 to do that is just to break some of the bonds in the Work-
space and then get back on track.

I didn’t want bonds to just spontaneously break all the time,
though. It would work (I checked, by implementing it and watch-
ing it work) but it seems inefficient This would be a good thing to run sta-

tistical tests on.
to break up perfectly good

bonds when things are going well. This intuitive feeling that “we
don’t want to interrupt progress when things are going well” is
generally modeled in FARG models by a computational tempera-
ture, which is low when things are “looking good” and high when
things are “looking bad”. I’d been eyeing this concept with con-
siderable mistrust—how do you know when things “look good”?
All I knew for sure about NaiveSort is that things were good when
there were more bonds, but that wouldn’t be a practical way to
know when to break bonds—after all, when there are no bonds,
that would make it harder to make any. That couldn’t be right!

I eventually decided to let codelet action figure it out for me. I
introduced a “frustration” measure to the Workspace, and incre-
mented the frustration of each number when it sparked but the
spark failed to bond it. And when a bond was formed, I set the
frustration of the entire new chain back to zero. This is pretty
hamfisted, like everything in NaiveSort, but it did allow me to
take the total frustration of the Workspace. By combining the
number of bonds with total frustration, I came up with a temper-
ature that seemed to kind of reflect the notion of things going
badly when the rules hit an impasse. And once that number gets
high enough, the system starts to release bond-breaker codelets
that select a unit at random and break one of its bonds.

Once I’d done that, NaiveSort never aborted. When it reached
one of its “bad configurations”, the failing bonds would slowly
raise the temperature until it hit my arbitrary trigger of 75, a
bond codelet or two would be released, and once those newly-free
numbers bonded the temperature would quickly fall again. They
often would have bonded elsewhere, and then NaiveSort would
terminate with a sorted list. Sometimes it stumbles through sev-
eral bad configurations before getting on track, but the breaker
mechanism rescues it every time.

I was honestly somewhat astonished. This entire process had
taken me only about a week (the breakers took a little longer).
Thirty years after first formulating this plan, I had finally written
a terraced-scan domain, even if a half-witted one. But what really

Page 14

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

bowled me over is that a half-witted set of codelets still work. This
Hofstadter guy was really onto something!

Features I consider minimal

That gives us the background to understand the “standard FARG”
feature set that I needed to implement this minimal domain. I did
come up with one novel feature and one marginally novel feature
that I couldn’t force myself to part with, but I’ll talk about those
in the next section. Everything here is just a straightforward im-
plementation of pretty standard FARG fare.

First and most obvious are the Workspace and the network
of units it contains. These are the entire point of the scan. Units
come in two basic flavors, although they can be a mixture as well;
by default, a unit either contains an item of data (I roughly con-
sider these to be percepts; they’re the input elements of the task
to be done) or a link between two other units, which I also speak
of as “containing” the other units. Each unit has a type, which is
a string. In NaiveSort, units are numbers, sparks, or bonds.

The Workspace is a table that tracks all current units by a scalar
ID, as well as a few status markers. The default is a single marker
“dead”, but others can be defined in a given Workspace instance.
The Workspace also tracks the population of each type (so it’s
very easy to see if there are any bonds in play, for instance) and
provides quick ways of selecting units at random.

Dead units are those that have been killed during the process.
Units are never deleted from an active Workspace, because the
Workspace is intended to be a task-specific single-use structure.
Eventually I’ll want to implement it in a fast, low-level language
and won’t want to waste time on garbage collection in a structure
that isn’t going to last anyway. Moreover, codelets could explic-
itly search for dead units as a sort of augmentation of short-term
memory: if a given bond has been tried before with no chance
of success, why try again? In the context of a larger cognitive
process, I envision the Workspace as being assembled from long-
term memory, running on a specific task, and then forming a
new episodic memory trace before being cleaned up. Dead units
won’t be remembered; that’s the extent of garbage collection in
this system.

Page 15

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

Unit containment. Units can contain one another, and this
is a bidirectional relationship, meaning that a unit knows who it
contains as well as who contains it. Units also have types. Unit
types can be used to control codelet release and targeting, and
the unit type can change over time (which I call “promotion”, al-
though my original reason for that name involved a hierarchical
model that I no longer use). This means that the unit’s type can
be regarded as a state machine and that it can attract different
codelets—or no codelets—over the course of its lifetime. In com-
bination with containment, the result is that containers can chunk
their contents if they are promoted to a type with no codelet as-
sociations, removing them from active processing. Promotion is
used in NaiveSort only to turn a spark into a bond if the bond-
checker succeeds, but Jumbo will promote letters to “glommed-
letters” once the bond group is fused into a glom, so they’re no
longer available for consideration in the bonding process.

The Coderack and codelet set in play for the current run.
The Coderack maintains a table of current codelet instances and a
second table, its enactment, which is a list of all the codelets that
have been run and their outcomes. A codelet instance is a bit of
code along with the specific parameters (generally a unit or two)
it will run on. The instance, when selected and run, can either
fire, fizzle, or fail, which correspond to taking appropriate action,
recognizing that its action is no longer appropriate in the cur-
rent context, or failing the criteria for taking action. Each of these
outcomes is recorded in the enactment along with the “rule” that
was applied; the rule is simply a short text that denotes which
decision branch led to the outcome, for debugging purposes.

Codelet posting routes. A codelet can (currently) be posted
in three ways. The first is simply an explicit post from outside
the scan. Codelets can also post follow-ups; all follow-up codelets
keep track of their invocation origin, again to simplify debugging.
Finally, scout codelets are posted at regular intervals based on the
current population of unit types in the Workspace.

This minimal terraced scan doesn’t include a Slipnet or any-
thing like it, but the unit type populations can be seen as a very
thin analog of the Slipnet’s ability to post conceptually appropri-
ate top-down scouts. In later phases, this mechanism will be used
by the conceptual network to do that, almost certainly with some
modification from the current state of the code.

Page 16

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

Temperature and decision bias. Nearly all implementations
feature a global temperature that regulates the determinism of
the process; this temperature is then varied as the quality of
the potential solution changes. This description strikes fear into
my heart—while it’s difficult to design codelets, I have even less
idea how to calculate the global quality of the Workspace. This
seems to embody considerable domain knowledge that can only
be discovered over the course of development. Fortunately, even
my hamfisted temperature calculator in NaiveSort seems to have
done what it needs to do, so presumably we can get away with
a lot of handwaving in this area. Copycat calculates temperature
based on structural aspects that I don’t yet understand, so it might
be possible to come up with some principles for temperature cal-
culation design later.

Features you might not consider minimal

There are a handful of features or concepts that I included in this
initial project despite all reasonable effort to avoid novelty.

Framelets. I found it difficult to write good codelets. I’ll be
talking about that a little more in the lessons-learned section,
but I landed on a general strategy of breaking each codelet into
two phases: the first phase looks around the Workspace and es-
tablishes some context, and the second phase applies some rules
and decision logic to that context in order to fire, fizzle, or fail. In
simple cases, this seemed easy, but in more complex cases it got
progressively harder to organize the context part.

Just to give this tension its proper background, though, I
should explain that the reason I want a unified Workspace execu-
tion engine in the first place (in other words, my motivation for
undertaking this project) is to support my ultimate goal of imple-
menting Langacker’s cognitive grammar. This was my goal in 1996, anyway;

in later years I generalized that to the
intent to “implement human seman-
tics,” whatever that ultimately proves
to mean.

At some point, I came
to the realization that this contextual snippet of the Workspace,
which I originally thought of as the “neighborhood” of some tar-
get unit (for instance, the neighborhood of a letter “c” unit that
has been bonded to “r” in a Jumbo run is the bond group of “c”,
“r”, and the linking unit) was actually more like a frame. But it
was a little frame. Late at night on May 29, 2024, I coined the
term “framelet” to describe it, and this coinage sparked a descent
into madness as it threatened to realign my entire understand-

Page 17

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

ing of what the Workspace even is—indeed, I realized that Copy-
cat’s Slipnet can be seen as the emergent snapshot of a cloud of
“ghost units” retrieved from lexical memory I have to admit I am quite taken

with the idea of ghost units exerting
spooky pressure on the Workspace.

and implemented as
framelets, the expectations of which give rise to conceptual pres-
sure to recontextualize the contents of the Workspace.

It took months of doing other things for me to regain the clar-
ity to implement the Workspace without all that thinking going
on, but the neighborhood context extractor still has to return
a framelet to make sense. And in fact, the calm and minimal
framelet module I ended up implementing gives us some very
convenient tools for writing codelets—it groups a few units, but
it can also mark some of them as special, as what Langacker
might call foreground or trajectors. This made codelet design a
lot easier, and so the framelet concept remains fairly central to
my implementation. You wouldn’t have to use it to write effective
codelets, but I certainly will.

Frustration. The other feature I explored and included in
NaiveSort was the idea of frustration. This is an indexed status
of the unit, meaning Workspace queries return it directly, and it
is incremented and decremented during codelet actions. Specifi-
cally, it’s incremented every time a codelet fails on a unit, and it’s
cleared for the entire bond chain every time a unit is added to the
chain. (I’ll talk about bond chains later, but they’re exactly what
they sound like.) So this isn’t really a feature of the Workspace
so much as it’s afforded by it—the codelets handle it.

Right now, I’ve just used frustration as one component of
global temperature, but later I may implement a system of biased
selection, so that sparks can preferentially focus on particularly
frustrated units. This can also be seen as a sort of “local tempera-
ture”, so that the Workspace ends up with a heat map. NaiveSort
works fine without that biased selection feature, though, and so
I’ve saved it for later.

Event subscription. I vaguely remember sitting in on a sem-
inar series or possibly even a class in 2006 during my second,
grazing orbit of FARG. No notes of this survive, so my sodden
meat memories have to suffice. At any rate, during that time is
when I realized that there had to be a strict separation of con-
cerns between the parallel terraced scan itself and any interactive
presentation of progress. The solution I envisioned then, and im-
plemented now, was an event notification mechanism.

Page 18

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

Each event that changes the Workspace (adding or killing a
unit, promotion of a unit to a different type, and periodic free-
form status updates) can be published to any number of sub-
scribers. This can be used for display or (later) could be used to
implement Jim Marshall’s Temporal Trace for self-watching, and
it can be logged for later display playback or whatever analysis
you care to perform. The idea here is to provide a clean break
between actual execution and—especially—whatever status dash-
board might be provided in the execution environment.

Lessons learned

Even this brief dalliance with FARGware programming has left
me with more insights about the process than I expected. The
total coding time over the space of a month couldn’t have been
more than five days, with another week and a half spent mopping
up details like better testing and a bulk test run organizer, and
I fully expected such a trivial domain to be relatively boring. It
wasn’t, though.

Codelet ecosystem design is hard. When I finally got the
basic engine doing what I needed it to do and started debugging
the actual codelets—even though there were only three—I was
surprised both by how the game felt different and how difficult it
was to keep things straight. I alluded to this a couple of pages ago,
but it’s surprising how much of the actual goal behavior of the
system is emergent. I kept thinking I needed some explicit code
or data structure that tracked bond chains (the sorted subgroups
of numbers)—but they’re unnecessary! And in fact adding some-
thing like a bond-chain unit that would keep track of each chain
would be a lot of work to get right; you’d have to make sure it
was notified when a unit was added to the chain or removed, and
if a two-number chain is dissolved then, what, there’s no more
bond chain unit? It would be a mess to keep track of!

So you just … don’t. This set of codelets works with numbers
and bonds, and that’s it. It’s true that the bond chain summary
extractor does know how to follow bond chains, but I suspect
you could get away without even that much knowledge of the
domain built into the code.

Framelets helped. Your mileage may vary, but starting off
by asking “what does this codelet need to know about the Work-

Page 19

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

space context?” really made the rest of the logic easy to stream-
line into a sort of decision tree. My original goal when rebooting
this initial project was not to introduce any new constructs at all,
but I couldn’t resist the framelet concept. I expect both context
extractors and most codelets to even out into a set of standard
types as I implement more domains, but we’ll see how right I am
about that.

A lot of knowledge about the domain isn’t reflected in
the code. And that’s a real problem. If the purpose of your code
is emergent, then nothing in your code documents its purpose. In
the brief time I spent thinking about bond chains and how they
could merge and so on, I got the barest taste of the immersion
that any FARG doctoral candidate working on a domain for a
few years must necessarily experience. In any kind of deep im-
mersion in a topic, the human mind responds by proliferating There’s a relevant XKCD for this (as

for everything), but I can’t remember
the right keywords to find it.

distinctions and jargon that may never have been imagined pre-
viously. Semantics just zooms in—this is exactly what makes AI
hard. So did any of my deeply meaningful insights make it into
the codebase? No, obviously not, because the codelets don’t even
know they’re building bond chains. There are two reasons this
was a disappointing discovery.

First and more prosaically, if someone needed to maintain this
code—or, let me assure you, if I myself needed to maintain it next
year—unless I wrote these insights down and documented the
mental shorthand and jargon I came up with just thinking about
something as trivial as bond chains, all that would have to be re-
discovered even to understand what was going on in the system.
I’ve been working with software for (checks notes) forty years
now, and I still don’t write everything down that I need to under-
stand even simple code, let alone an AI research project. I keep
a development log for everything I code—but even if I manage
to express some of these insights, there’s no guarantee I can find
that information later. Like this report, my devlogs are wordy, but
unlike this report, I don’t edit them for clarity.

Of course, this is true of any software, to a certain extent—it’s
one of the key challenges in software maintenance. But I felt it
more keenly in this context, due to the second reason for disap-
pointment. In the context of what I hope to achieve with a FARG-
based approach, my goal is to approach semantics. If the semantic
insights I developed while writing the domain code didn’t make it

Page 20

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

into the code at all, then have I missed the point? I think I haven’t,
actually, although I needed to think about it a little.

The Workspace and the task of perception it is carrying out,
after all, are not a full model of cognition. The focus of the FARG
model is to work at the level just below our accessible thoughts
—and that means that deliberative thought is not even supposed
to be located here. It seems reasonable to me that even if the
Workspace process has no knowledge of higher-level concepts
like bond chains, a self-watching module could. So the codelet
ecosystem may have no notion of bond chains or the difficulty
of two-unit bond chains in the NaiveSort domain, but a watcher
could easily say, “Aha, there’s one of those two-unit bond chains
again,” and take some action or at least just know why this run
took longer. The FARG literature usually calls this the “cognitive/
subcognitive” distinction, but I’m increasingly thinking of it as
a “semantic/subsemantic” distinction—which might just be a dif-
ferent word for the same thing, but again, I’m going to need more
experience here to have a more informed idea.

Incidentally, two days after I wrote the previous paragraph, my
reading of John Rehling’s dissertation[4] [4] Rehling, J. A. (2001) Letter Spirit

(Part Two): Modeling Creativity in a
Visual Domain

 reached section 5.2.4,
where he defines the parallel terraced scan, and makes essen-
tially the same point about subcognitive and cognitive levels, and
cites Jim Marshall’s dissertation on Metacat, which I have read,
although it’s been a year and a half since my last reading. So it’s
not that novel an insight!

Self-watching. A week after writing that paragraph, I thought
it might be a good idea to go back to Marshall[5] [5] Marshall, J. B. (1999) Metacat: A

Self-Watching Cognitive Architecture
for Analogy-Making and High-Level
Perception

 after all. To my
surprise, when I opened the PDF on my reading tablet, it was at
the section on self-watching. Clearly I’d read the section at least
twice, but now I have the conceptual depth to understand it. (Re-
member how I said I don’t understand anything until I’ve imple-
mented it? This is what I mean.)

The parallel terraced scan is only a healthy part of this nutri-
tious breakfast. A full cognitive model needs to know what it’s
doing—literally. Self-watching is one way that happens, and it’s
at the self-watching level that we can start to talk about seman-
tics, as the framework for seeing meaning in what we’re doing.
I’ve always known that Metacat “did self-watching,” but only
now do I have a real understanding of why. I suspect no semantic

Page 21

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

model of any complexity—perhaps no semantic model at all—will
be able to work without a self-watching architecture to run it on.

The Workspace is remarkably forgiving. Even though I’ve
been familiar with FARGware for essentially my entire adult life,
I was still amazed to see that I was able to slap together a few
poorly-considered rules and the system then managed to sort
numbers into lists just fine. Back in the 90′s (although the Way-
back only archived it in 2003), I wrote, “It is difficult to watch a
Copycat run without seeing the program as a (semi-)intelligent
being, and rooting for it to see this or that solution to the prob-
lem.” That sense is still there. Watching NaiveSort fumble its way
through a number list was fulfilling.

Now what?

When I first decided to get back into this research, I gave myself
one rule above all else: I wasn’t going to write anything on it
until I had table stakes—until, in other words, I’d actually imple-
mented something. I’m honestly torn whether this is sufficient
table stakes or not. It’s been an almost trivial step towards what I
want to be doing. On the other hand, I also told myself that once
I did implement something, I was going to have to write about
it or it wouldn’t count. I hadn’t realized just how incompatible
these two rules were, but as we’ve established, the Workspace is
forgiving. I don’t know if this is table stakes or not, but I’ve writ-
ten about it.

Next, obviously, I’ll finish implementing Jumbo. I expect this
to include a letter-and-bond system that creates candidate bond
chains (that part already works), then a glom-spark-to-glom sys-
tem that turns letter bond chains (and some single but frustrated
letters) into glommed tiles. I’m currently thinking I might try a
more complex unit structure for turning the glom-tiles into syl-
lables and wordoids, then implement some entropy-preserving
swapping and shuffling codelets to try to improve overall quality,
and then I’ll stick a forkerism in it and call it done, and be sure of
its table-stakes nature.

After that, I’ll try Numbo. The Numbo system incorporates a
conceptual network, which should make it easier to think about
the Slipnet when I tackle Copycat. Numbo also has the distinct
advantage that I have three versions of an existing codebase to

Page 22

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

work from (Alex Linhares reimplemented Daniel Defays’s orig-
inal code as his FARG warmup, and Scott Bolland implemented
Numbo as one of the test domains for FAE).

Then, yes, I’ll see if I can manage Copycat and Tabletop. I very
much doubt that much of this tentative plan is going to survive
contact with the enemy, but it gives me some direction. Along
the way, I want to address a few things in a lot more detail.

Semantics, semantics, semantics. My larger roadmap actu-
ally consists of multiple tiers of research in what I think of as the
“research stack.” Each tier can roughly be seen as the infrastruc-
ture for the next tier up. This “terraced scan classic” is Tier 1 in
that loose system, I am certainly not foolish enough to

tell you that the stack has a total of six
tiers. That would be madness!

and Tier 2 consists of the application of the
terraced scan to handle, and to take advantage of, semantic struc-
ture.

Tier 2 includes self-watching, episodic and lexical and se-
mantic long-term memory with progressive recall, the use of
framelets and expectations to exert pressure on the terraced scan,
and also the description of each domain at a level that allows
standard tools and standard(ish) codelets to be used to implement
it. I’ve long thought there wasn’t much point in putting too much
effort into thinking about that level before I had a working ter-
raced scan and a couple of implemented domains to generalize
from—but now I do have a working terraced scan.

Ultimately, the development of a new domain of application
should look a lot less like writing codelets and a lot more like
defining terms in natural language, maybe drawing some dia-
grams. And then we’ll have the infrastructure to start talking
about learning.

Those Workspace display diagrams. Speaking of diagrams,
it’s true that I embarked on diagramming too early for it to be
sustainable. On the other hand, seeing the first phase of Jumbo
codelets working as an animated sequence was immensely use-
ful for developing some intuitive understanding for the process.
I want to get back to that point, but on a much sounder theo-
retical basis. One of the palate-cleansing activities I engaged in
while trying to get my plans clear for a second run at implemen-
tation of the terraced scan was a close examination of semantics
on the basis of the NSM[6] [6] Goddard, C. (2021) Minimal Lan-

guages in Action
. That involved a lot of diagramming,

and it brought home two things to me: diagramming tools are
critical for understanding complex structures and processes, and

Page 23

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

diagrams are another form of semantic presentation—one based,
in point of fact, on analogies drawn between abstract concepts
on one end and geometric shapes and lines on the other.

From that insight, it’s a short step to the realization that a dia-
gram of the Workspace isn’t, as I had mistakenly thought, part of
the target domain at all. It works from a descriptive semantics of
the Workspace, meaning that diagramming can be seen as closely
related to self-watching. As always seems to happen when I start
doing this research, everything turns out to depend on every-
thing else. But at least I can keep reminding myself that one part
of it’s working now.

Other perceptual tasks. I think it might be the case that
Jumbo gets away without the need for a conceptual network be-
cause it’s a relatively low-level perceptual task. The letters and
glom tiles just don’t have a lot of semanticity; they’re tokens we
can shuffle around at will. I’m fairly sure that other more percep-
tual, less analogical tasks like vision might be at this same level
of complexity—Phaeaco draws an explicit distinction between a
retinal level of processing and a higher cognitive level, and I sus-
pect the retinal level is at the architectural level I’ve just devel-
oped here. So I’d like to start exploring diagram understanding
as well as diagram generation.

Self-watching. Having finally understood how critical self-
watching is to the overall cognitive project, I find myself think-
ing about it in detail this week. Over the next month or so, I’ll
probably work out some initial project for getting a basic under-
standing of how it might fit into one domain or another.

Performance. My goal in this first approximation has just
been to get a terraced scan working at all. For me, that’s easier in
Perl and it’s also easier with some of the support code I’ve been
using for years now. None of that is written for speed; it’s written
to be easy for me to work with. So at some point relatively soon,
it’ll be a reasonable next step to move some of this functional-
ity into C for portability and speed. I’ve been collecting building
blocks for that for many years, so it should be more or less a mat-
ter of bolting a few of them together. Once you have something
written in C, you’re halfway to anywhere.

The ARC-AGI benchmark.[7] [7] Chollet, F. (2019) On the Measure
of Intelligence

 I don’t know about you, but
when I first saw the ARC-AGI problem set, it seemed almost to be
written with FARG tools in mind. It’s a set of geometrical trans-

Page 24

A MINIMUM VIABLE PRODUCT FOR THE PARALLEL TERRACED SCAN

formation analogies—it’s practically just Copycat problems with
a Bongard sauce. I think the place to start is by exploring the se-
mantics of transformation rules (Copycat/Metacat) in combina-
tion with the low-level geometrical perception I just mentioned
above. Should be a snap.

And with that, I’ll conclude. Watch this space for further de-
tails.

References

[1] D. R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid. New York, NY: Basic Books, 1979.

[2] S. W. Bolland, FAE: The Fluid Analogies Engine: A Dynamic, Hybrid Model of Perception and Mental
Deliberation. The University of Queensland, 2004.

[3] D. R. Hofstadter, “The architecture of Jumbo,” in Proceedings of the International Machine Learning
Workshop, June 22-24, 1983, Allerton House, Monticello, Illinois, 1983.

[4] J. A. Rehling, “Letter Spirit (Part Two): Modeling Creativity in a Visual Domain,” 2001.

[5] J. B. Marshall, “Metacat: A Self-Watching Cognitive Architecture for Analogy-Making and High-Level
Perception,” 1999.

[6] C. Goddard, Minimal Languages in Action. Cham, Switzerland: Palgrave Macmillan, 2021.

[7] F. Chollet, “On the Measure of Intelligence,” 2019.

Page 25

	What I think I'm doing here
	Brief history of the parallel terraced scan
	Implementing a first domain
	A minimum viable product: NaiveSort
	Features I consider minimal
	Features you might not consider minimal
	Lessons learned
	Now what?
	References

